311 research outputs found

    Chern-Simons Supergravities with Off-Shell Local Superalgebras

    Get PDF
    A new family of supergravity theories in odd dimensions is presented. The Lagrangian densities are Chern-Simons forms for the connection of a supersymmetric extension of the anti-de Sitter algebra. The superalgebras are the supersymmetric extensions of the AdS algebra for each dimension, thus completing the analysis of van Holten and Van Proeyen, which was valid for N=1 and for D=2,3,4,mod 8. The Chern-Simons form of the Lagrangian ensures invariance under the gauge supergroup by construction and, in particular, under local supersymmetry. Thus, unlike standard supergravity, the local supersymmetry algebra closes off-shell and without requiring auxiliary fields. The Lagrangian is explicitly given for D=5, 7 and 11. In all cases the dynamical field content includes the vielbein, the spin connection, N gravitini, and some extra bosonic ``matter'' fields which vary from one dimension to another. The superalgebras fall into three families: osp(m|N) for D=2,3,4, mod 8, osp(N|m) for D=6,7,8, mod 8, and su(m-2,2|N) for D=5 mod 4, with m=2^{[D/2]}. The possible connection between the D=11 case and M-Theory is also discussed.Comment: 13pages, RevTeX, no figures, two column

    Extension of the Poincar\'e group with half-integer spin generators: hypergravity and beyond

    Get PDF
    An extension of the Poincar\'e group with half-integer spin generators is explicitly constructed. We start discussing the case of three spacetime dimensions, and as an application, it is shown that hypergravity can be formulated so as to incorporate this structure as its local gauge symmetry. Since the algebra admits a nontrivial Casimir operator, the theory can be described in terms of gauge fields associated to the extension of the Poincar\'e group with a Chern-Simons action. The algebra is also shown to admit an infinite-dimensional non-linear extension, that in the case of fermionic spin-3/23/2 generators, corresponds to a subset of a contraction of two copies of WB2_2. Finally, we show how the Poincar\'e group can be extended with half-integer spin generators for d≥3d\geq3 dimensions.Comment: 12 pages, no figures. Matches published versio

    Asymptotic structure of N=2\mathcal{N}=2 supergravity in 3D: extended super-BMS3_3 and nonlinear energy bounds

    Full text link
    The asymptotically flat structure of N=(2,0)\mathcal{N}=(2,0) supergravity in three spacetime dimensions is explored. The asymptotic symmetries are spanned by an extension of the super-BMS3_3 algebra, with two independent u^(1)\hat{u}(1) currents of electric and magnetic type. These currents are associated to U(1)U(1) fields being even and odd under parity, respectively. Remarkably, although the U(1)U(1) fields do not generate a backreaction on the metric, they provide nontrivial Sugawara-like contributions to the BMS3_3 generators, and hence to the energy and the angular momentum. The entropy of flat cosmological spacetimes with U(1)U(1) fields then acquires a nontrivial dependence on the u^(1)\hat{u}(1) charges. If the spin structure is odd, the ground state corresponds to Minkowski spacetime, and although the anticommutator of the canonical supercharges is linear in the energy and in the electric-like u^(1)\hat{u}(1) charge, the energy becomes bounded from below by the energy of the ground state shifted by the square of the electric-like u^(1)\hat{u}(1) charge. If the spin structure is even, the same bound for the energy generically holds, unless the absolute value of the electric-like charge is less than minus the mass of Minkowski spacetime in vacuum, so that the energy has to be nonnegative. The explicit form of the Killing spinors is found for a wide class of configurations that fulfills our boundary conditions, and they exist precisely when the corresponding bounds are saturated. It is also shown that the spectra with periodic or antiperiodic boundary conditions for the fermionic fields are related by spectral flow, in a similar way as it occurs for the N=2\mathcal{N}=2 super-Virasoro algebra. Indeed, our super-BMS3_3 algebra can be recovered from the flat limit of the superconformal algebra with N=(2,2)\mathcal{N}=(2,2), truncating the fermionic generators of the right copy.Comment: 32 pages, no figures. Talk given at the ESI Programme and Workshop "Quantum Physics and Gravity" hosted by ESI, Vienna, June 2017. V3: minor changes and typos corrected. Matches published versio

    Exact quasinormal modes for a special class of black holes

    Full text link
    Analytic exact expressions for the quasinormal modes of scalar and electromagnetic perturbations around a special class of black holes are found in d\ge3 dimensions. It is shown that, the size of the black hole provides a bound for the angular momentum of the perturbation. Quasinormal modes appear when this bound is fulfilled, otherwise the excitations become purely damped.Comment: 8 pages, no figures. Slightly updated version of the plenary talk given at the General Relativity Conference: "50 Years of FaMAF and Workshop on Global Problems in Relativity", hosted during November 2006 at FaMAF, Universidad Nacional de Cordoba, Cordoba, Argentina

    Canonical sectors of five-dimensional Chern-Simons theories

    Get PDF
    The dynamics of five-dimensional Chern-Simons theories is analyzed. These theories are characterized by intricate self couplings which give rise to dynamical features not present in standard theories. As a consequence, Dirac's canonical formalism cannot be directly applied due to the presence of degeneracies of the symplectic form and irregularities of the constraints on some surfaces of phase space, obscuring the dynamical content of these theories. Here we identify conditions that define sectors where the canonical formalism can be applied for a class of non-Abelian Chern-Simons theories, including supergravity. A family of solutions satisfying the canonical requirements is explicitly found. The splitting between first and second class constraints is performed around these backgrounds, allowing the construction of the charge algebra, including its central extension.Comment: 12 pages, no figure
    • …
    corecore